This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Liquid Crystals

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title content=t713926090

Synthesis, characterization and crystal structure of mesogenic compounds with an alkyloxy and a semi-perfluorinated chain. Influence of the alkyloxy chain length on molecular arrangement and molecular interactions

Philippe Krommá; Michel Cotraita; Huu Tinh Nguyen ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratoire de Cristallographie et Physique Cristalline, Université Bordeaux I, TALENCE Cédex, France ${ }^{\text {b }}$ Centre de Recherche Paul Pascal, Pessac Cédex, France

To cite this Article Kromm, Philippe , Cotrait, Michel and Nguyen, Huu Tinh(1996) 'Synthesis, characterization and crystal structure of mesogenic compounds with an alkyloxy and a semi-perfluorinated chain. Influence of the alkyloxy chain length on molecular arrangement and molecular interactions', Liquid Crystals, 21: 1, 95 - 102
To link to this Article: DOI: 10.1080/02678299608033799
URL: http://dx.doi.org/10.1080/02678299608033799

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
```


Synthesis, characterization and crystal structure of mesogenic compounds with an alkyloxy and a semi-perfluorinated chain. Influence of the alkyloxy chain length on molecular arrangement and molecular interactions

by PHILIPPE KROMM, MICHEL COTRAIT
Laboratoire de Cristallographie et Physique Cristalline, Université Bordeaux I, 351, cours de la Libération, F-33405 TALENCE Cédex, France
and HUU TINH NGUYEN*
Centre de Recherche Paul Pascal, Avenue Albert Schweizter, F-33600 Pessac Cédex, France

Abstract

This paper describes the synthesis and study of the mesomorphic propertics (by DSC, microscopic observation and X-ray diffraction) of three new series of semi-perfluorinated liquid crystals: 4-(2,2,3,3,4,4,4-heptafluorobutyloxycarbonyl)phenyl, 4-(2,2,3,3,4,4,5,5octafluoropentyloxycarbonyl) phenyl, and 4-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-octyloxycarbonyl)phenyl 4 -(n-alkyloxy) benzoates. One compound of the second family crystallizes in the $P \overline{1}$ space group with $Z=2$. The molecule adopts a slightly bent conformation with a fully extended alkyloxy and semi-perfluorinated chain in a smectic C-like structure. The comparison of the present structure is made with that of a similar compound of the first family with a longer alkyloxy chain (this latter crystallizes in the $P 1$ space group with two independent molecules in the unit cell). Comparison of the molecular packing shows the importance of the chain lengths in the molecular arrangement and molecular interactions in both structures.

1. Introduction

There are numerous ways to introduce fluorine into the molecules of liquid crystals, but here we limit the brief discussion to materials in which one of the tails is a semi-perfluorinated alkyl chain. Earlier work [1-5] on these materials showed that the smectic mesophases were enhanced, but the effect on the mesomorphic properties of the extent of the fluorination has not been widely explored. This paper describes the synthesis and mesomorphic properties of three series with the following formulae:

$$
\begin{aligned}
& \mathbf{R}_{\mathrm{F}}=\mathrm{CH}_{2}\left(\mathrm{CF}_{2}\right)_{3} \mathrm{~F} \text { for series } 1 \mathrm{~A} \\
& \mathbf{R}_{\mathrm{F}}=\mathrm{CH}_{2}\left(\mathrm{CF}_{2}\right)_{4} \mathrm{H} \text { for series 1B } \\
& \mathbf{R}_{\mathrm{F}}=\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CF}_{2}\right)_{6} \mathrm{~F} \text { for series 1C }
\end{aligned}
$$

At the present time there are very few reports dealing with the crystal structures of perfluorinated mesogenic compounds. Let us mention the crystal structures of two cyano compounds, 4-cyanophenyl 4-perfluorohexyl (or heptyl) benzoate [6,7] which give birth to smectic $\mathrm{S}_{\mathrm{A} 2}$ mesophases and for which the molecular arrangement

[^0]in the crystal perfectly foreshadows that of the mesophase. Moreover, these structures provided us with evidence of the precise geometry of the $\left(\mathrm{CF}_{2}\right)_{n}$ chains with mean $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{F}$ bond lengths close to $1.52 \AA$ and $1.34 \AA$, respectively, and $\mathrm{F}-\mathrm{C}-\mathrm{F}$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angles close to 107° and 119°, respectively. In order to understand the molecular arrangement in the crystal and the relation between this structure and that in the mesophase, we performed the crystal structure study of the two compounds.

2. Synthesis

Three series of mesogenic compounds with a semiperfluorinated chain and having a dibenzoate core have now been synthesized. The compounds were obtained through the scheme shown overleaf.

3. Mesomorphic properties

All the compounds are mesomorphic. The nature of the phases, the transition temperatures and the enthalpies were determined both by microscopic observation (Leitz microscope equipped with a heating and cooling stage Mettler FP52) and by calorimetric measurements (DSC7 Perkin Elmer). The transition temperatures (${ }^{\circ} \mathrm{C}$)

1) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}$, EtOH. reflux 2 h
2) $\mathrm{KOH}, \mathrm{HCl}$
3) 4) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$, reflux 4 h 2) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}$ 3) $\mathrm{H}_{3} \mathrm{O}^{+}$
1) $\mathrm{HOR}_{\mathrm{F}}, \mathrm{DCC}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~A})$
2) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}$
3) DCC. DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (A)

Scheme

and enthalpies ($\mathrm{kJ} \mathrm{mol}^{-1}$) of the three synthesized families $\mathbf{1 A}, \mathbf{B}, \mathbf{C}$ are reported in tables $1(a),(b),(c)$. The phase diagrams or plots of transition temperatures against the number of carbon atoms of the alkoxy chains, figures $1(a)$ and (b), correspond, respectively, to families 1 A and 1C.

All compounds present a smectic A mesophase and, for some, a smectic C mesophase; the latter is in most cases enantiotropic, but in some cases monotropic (1B series with $n>7$). Generally speaking, there is a decrease of the $\mathrm{S}_{\mathrm{A}} \rightarrow I$ transition temperature when the number of carbon atoms in the alkoxy chain increases, corresponding to the transition from a rigid system (short chains) to a more flexible one (long chains). As far as the 1 A series is concerned, the smectic A domain decreases ($n=10$, domain $<3^{\circ} \mathrm{C}$) when the alkoxy chain length increases. It is the same for compounds of the 1 C series with $n \leqslant 10$. In fact, with n greater than 11 , the S_{A} mesophase disappears and the S_{C} domain increases.

Let us point out that the hydrogenous compounds (containing no fluorine) with the general formula:

$$
\mathrm{H}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{O}-\mathrm{O}-\mathrm{COO}-\mathrm{O}-\mathrm{COO}\left(\mathrm{CH}_{2}\right)_{\mathrm{m}} \mathrm{H}
$$

display only the smectic A phase, table $1(d)$.
These results show that the semi-perfluorinated chains favour not only the smectic A phase (for the series

Table 1(a). Transition temperatures (C) and enthalpies ($\mathrm{kJ} \mathrm{mol}^{-1}$) of series $1 \mathrm{~A} . \mathrm{Cr}=$ crystal; $\mathrm{S}_{\mathrm{C}}, \mathrm{S}_{\mathrm{A}}=$ smectic phases C and $\mathrm{A} ; \mathrm{I}=$ isotropic liquid; $\bullet=$ the phase exists; []$=\Delta H$.

n	Cr	S_{C}	$S_{\text {A }}$	I
6	- 63.7 [19.49]	- 72.0 [0.31]	- 99.2 [6.18]	\bullet
7	- 59.3 [21-47]	- $83.6[0.32]$	- 95.4 [6.08]	\bullet
8	- $65.5[26.83]$	- $85 \cdot 2$ [0.44]	- 92.0 [6.29]	-
9	- $64.6[17.72]$	- 77.7 [0.45]	- 84.3 [6.28]	-
10	- 59.9 [17.86]	- $80.5[0.46]$	- 83.1 [6.15]	\bullet
11	- 59.7 [25.78]	- $76 \cdot 8[0.48]$	- $79.2[6.12]$	\bullet
12	- 65.7 [27.00]	- 73.0 [0.36]	- $75.6[6.02]$	\bullet

Table $1(b)$. Transition temperatures (${ }^{\circ} \mathrm{C}$) and enthalpies ($\mathrm{kJ} \mathrm{mol}^{-1}$) of series 1B. $\mathrm{Cr}=$ crystal; $\mathrm{S}_{\mathrm{C}}, \mathrm{S}_{\mathrm{A}}=$ smectic phases C and $A ; I=$ isotropic liquid: $\bullet=$ the phase exists;-= the phase does not exist; ()$=$ monotropic phase; [] $=\Delta H$.

n	Cr	S_{C}	S_{A}	I
6	- 56.8 [37.31]	-	- 71.2 [5.56]	-
7	- $43 \cdot 1[17.16]$	-	- $51.5[5.68]$	\bullet
8	- 57.3 [21.61]	($50 \cdot 3[-0 \cdot 12])$	- 63.4 [$5 \cdot 20]$	-
9	- 48.6 [16.74]	-	- 53.6 [4.37]	-
10	- $50.8[21.60]$	($50.1[-0.18])$	- 58.1 [5.14]	-
11	- 50.9 [15.84]	- $51 \cdot 9$ [0.31]	- 57.2 [$5 \cdot 32]$	-
12	- $46 \cdot 2$ [15.87]	- 52.0 [0.27]	- 540 [5.30]	-

Table 1 (c). Transition temperatures (${ }^{\circ} \mathrm{C}$) and enthalpies $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ of series $1 \mathrm{C} . \mathrm{Cr}=$ crystal; $\mathrm{S}_{\mathrm{C}}, \mathrm{S}_{\mathrm{A}}=$ smectic phases C and A ; $\mathrm{I}=$ isotropic liquid; \bullet the phase exists; $-=$ the phase does not exist; []$=\Delta H$.

n	Cr	S_{C}	$S_{\text {A }}$	I
6	- 83.4 [30.55]	- 109.4 [0.07]	- $141 \cdot 2$ [9.36]	-
7	- 89.1 [29.83]	- 118.7 [0.07]	- 134.6 [8.92]	\bullet
8	- $86 \cdot 2$ [28.14]	- $122.3[0.21]$	- $130.6[8.81]$	-
9	- 84.3 [29.49]	- 113.5 [0.29]	- $120.0[8.39]$	-
10	- 82.2 [27.45]	- $109 \cdot 0[0.30]$	- 112.5 [8.41]	-
11	- 89.2 [35.55]	- $113 \cdot 8$ [10.08]	-	-
12	- 85.2 [16.44]	- $108 \cdot 1$ [10.58]	-	\bullet
14	- 92.3 [23.84]	- 101.7 [11.12]	-	-

Table $1(d)$. Transition temperatures (${ }^{(C)}$ and enthalpies ($\mathrm{kJ} \mathrm{mol}^{-1}$) of the hydrogenous series (containing no fluorine). $\mathrm{Cr}=$ crystal; $\mathrm{S}_{\mathrm{A}}=$ smectic A phase; $\mathrm{I}=$ isotropic liquid; $\bullet=$ the phase exists.

n	m	Cr	S_{A}	I	Ref	
10	4	\bullet	59	\bullet	72	\bullet
12	4	\bullet	62	\bullet	$72 \cdot 5$	\bullet
10	7	\bullet	64	\bullet	74	\bullet
12	7	\bullet	71	\bullet	75	\bullet
8	6	\bullet	51	\bullet	69	\bullet
8	10	\bullet	54	\bullet	67	\bullet

Figure 1. (a) Evolution of the polymorphism of series $\mathbf{1 A}$ as a function of the number n of carbon atoms of the alkoxy chain. (b) Evolution of the polymorphism of series 1C as a function of the number n of carbon atoms of the alkoxy chain.
displaying the nematic phase) but also the smectic C phase; for example with series 1C, we obtained three derivatives ($n=10-12$) which only exhibit the S_{C} phase.

Three compounds ($n=6,8$ and 11) per family were studied by X-ray diffraction ($\lambda \quad \mathrm{CuK}_{\alpha}=1.54178 \AA$, Imaging Plate Scanner Marresearch). The results are presented in table 2. The S_{C} and S_{A} sheet thickness ($d_{\mathrm{S}_{\mathrm{C}}}$ and $d_{\mathrm{S}_{\mathrm{A}}}$), the calculated molecular length L (evaluated from a molecular model) and the $d_{\mathrm{S}_{\mathrm{A}}} / L$ ratio are given. With regard to the sheet thickness, the following is to be noted:
(1) The thickness of the S_{A} and S_{C} sheets increases within a given family when the number of carbon atoms in the alkoxy chain increases.

Table 2. Characteristics of the S_{C} and S_{A} phases for series $\mathbf{1 A}, \mathbf{1 B}$ and $1 \mathrm{C} . d_{\mathrm{S}_{\mathrm{C}}}, d_{\mathrm{S}_{\mathrm{A}}}=$ layer thickness of the smectic C and A phases; $L=$ calculated molecular length; $d / L=$ layer thickness in the S_{A} phase/calculated molecular length.

Series	n	$d_{\mathrm{S}_{\mathrm{C}}}$	$d_{\mathrm{S}_{\mathrm{A}}}$	L	$d_{\mathrm{S}_{\mathbf{A}}} / L$
$\mathbf{1 A}$	6	$26 \cdot 8$	27.3	$30 \cdot 3$	0.90
	8	$27 \cdot 2$	$27 \cdot 9$	$32 \cdot 5$	0.86
	11	$28 \cdot 8$	$29 \cdot 8$	$35 \cdot 8$	0.83
$\mathbf{1 B}$	6	-	$28 \cdot 7$	$31 \cdot 4$	0.91
	8	$29 \cdot 2$	29.8	$33 \cdot 6$	0.89
	11	$31 \cdot 1$	$31 \cdot 8$	$36 \cdot 9$	0.86
$\mathbf{1 C}$	6	$32 \cdot 8$	$33 \cdot 1$	$35 \cdot 0$	0.94
	8	$32 \cdot 9$	$33 \cdot 3$	$37 \cdot 2$	0.89
	11	$33 \cdot 7$	-	-	-

(2) For a fixed n value, there is an increase in S_{A} and S_{C} sheets along with the number of fluorinated carbon atoms.
(3) The thickness difference between S_{A} and S_{C} is small ($<0.9 \AA$), involving limited reorganization between the two mesomorphic states (confirmed by the transition energies $\mathrm{S}_{\mathrm{C}} / \mathrm{S}_{\mathrm{A}}$ lower than 0.5 kJ mole $^{-1}$).
(4) The $d_{\mathrm{S}_{\mathrm{A}}} / L$ ratio, close to 1 , but always less than 1 , for all compounds, shows the existence of monomolecular sheets, called $\mathrm{S}_{\mathrm{A} m}$. This result is different from that obtained by Doi et al. [4] for long fluorinated chains $\left(\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{C}_{8} \mathrm{~F}_{17}\right.$ or $\left.\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{C}_{10} \mathrm{~F}_{21}\right)$. They showed that the layer spacings of the S_{A} or S_{C} phases are equal to or greater than the molecular lengths.

4. Crystal structures

Compounds 1A $(n=11)$ and 1B $(n=6)$ have the polymorphism and formulae shown below:

$$
\mathbf{1 B}(n=6) \mathrm{Cr} \xrightarrow{567^{7} \mathrm{C}} \mathrm{~S}_{\mathrm{A}} \xrightarrow{712^{\circ} \mathrm{C}} \mathrm{I}
$$

4.1. Experimental

Colourless crystals from compound 1B $(n=6)$ were obtained with some difficulty by evaporation from hexane solutions. They were fragile, soft and often twinned. One crystal was lamellar, with dimensions $0.45 \mathrm{~mm} \times 0.25 \mathrm{~mm} \times 0.05 \mathrm{~mm}$. The unit-cell parameters were obtained by a least-squares fit of the setting angles of 25 reflections, with θ between 10 and 17°. The crystal
data are given in table 3. Intensity data were collected on a CAD-4 Enraf Nonius diffractometer for the monochromatized MoK ${ }_{\alpha}$ radiation $(\lambda=0.7107 \AA)$ with $\theta_{\text {max }}=$ $25^{\circ},(-19 \leqslant h \leqslant 19),(-15 \leqslant k \leqslant 15)$ and $(0 \leqslant l \leqslant 6)$ using the $\omega-20$ scan mode. The scan range was $(1 \cdot 5+0.35$ tan $\theta)^{\circ}$ and the detector width $(2.0+2.9 \tan \theta) \mathrm{mm} ; 6129$ reflections were measured of which 2936 were unique ($R_{\text {int }}=0.016$) and 1521 observed ($I>2.5 \sigma \quad(I)$). Experimental absorption was performed; minimum and maximum transmission factors were 0.97 and 0.99 , respectively.

The structure was solved using the MITHRIL package [8] which allowed us to locate most non-hydrogen atoms. The remaining atoms were positioned by a single Fourier refinement performed using the local Crisaf program. The hydrogen atoms were then introduced at their theoretical positions [9] and allowed to ride with the carbon atoms to which they are attached. The refinement was concluded with final reliability factors $R=0.066$ and $R=0.067$ with $S=1.17$.

4.2. Molecular conformation

Atomic parameters (x, y, z, Beq) are given in table 4. The atom labelling along with the molecular conformation are presented in a SNOOPI drawing [10] in figure 2. The thermal motion equivalent Beq factors of the dibenzoate central core (atoms C_{1} to O_{18}), of the beginning of both the alkoxy chain (atoms O_{30} to C_{34}) and of the perfluorinated chain (atoms $\mathrm{C}_{19}, \mathrm{C}_{20}$) are moderate. The Beq factors are much higher at the end of both chains, especially those of the perfluorinated terminal chain (atoms $\mathrm{C}_{21}, \mathrm{C}_{22}, \mathrm{C}_{23}$) and the fluorine atoms attached to them.

Bond lengths and bond angles are given in tables $5(a)$ and 5 (b). The molecule can be split into three parts: the central dibenzoate core, the hexyloxy chain and the semi-perfluorinated chain. Bond lengths and angles of the central core are close to those found in compound 1A $(n=11)$ [11]. $\mathrm{C}-\mathrm{C}$ bond lengths and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angles in the alkoxy chain are in agreement with those observed in other structures [12,13]. Average values of the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{F}$ bond lengths are equal to 1.54 and $1.34 \AA$, respectively. The $\mathrm{C}-\mathrm{C}-\mathrm{C}$ and the $\mathrm{F}-\mathrm{C}-\mathrm{F}$ angles, close to 115° and 107°, respectively, are in agreement

Table 3. Crystal data for the compound 1B ($n=6$).

$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~F}_{8}$	$\mathrm{M}_{x}=556.5 \mathrm{~g} \mathrm{~mol}^{-1}$
Triclinic	$P 1$ space group $(Z=2)$
$a=16.620(7) \AA$	$\alpha=98.64(4)^{\circ}$
$b=13.355(4) \AA$	$\beta=87.00(4)^{\circ}$
$c=5.843(3) \AA$	$\gamma=95.73(3)^{\circ}$
$v=1275 \AA^{3}$	$d_{\mathrm{c}}=1.47 \mathrm{~g} \mathrm{~cm}^{-3}$
	$\mu(\mathrm{MoK} \alpha)=0.15 \mathrm{~mm}^{-1}$

Table 4. Atomic coordinates x, y, z and Beq factors for the compound 1B $(n=6)\left(\mathrm{Beq}=4 / 3 \Sigma_{i} \Sigma_{j} \beta_{i j} a_{i} a_{j} \AA^{2}\right)$.

	x / a	y / b	z/c	Beq
C1	$0 \cdot 3561$ (4)	-0.0661 (6)	1.5692 (16)	67 (5)
C2	0.2788 (4)	-0.1137 (6)	1.5693 (15)	6.6 (4)
C3	$0 \cdot 2233$ (4)	-0.0878 (6)	$1 \cdot 4297$ (15)	6.3 (4)
C4	0.2427 (4)	-0.0157 (6)	$1 \cdot 2847$ (14)	5.7 (4)
C5	$0 \cdot 3212$ (5)	0.0304 (6)	$1 \cdot 2837$ (15)	7.0 (5)
C6	$0 \cdot 3763$ (4)	0.0061 (6)	$1 \cdot 4250$ (17)	7.8 (5)
C7	$0 \cdot 1814$ (4)	0.0060 (6)	$1 \cdot 1319$ (14)	$5 \cdot 9$ (4)
08	$0 \cdot 1149$ (3)	-0.0353 (4)	$1 \cdot 1164$ (11)	$8 \cdot 2$ (3)
09	$0 \cdot 2100$ (3)	0.0819 (4)	1.0131 (10)	$7 \cdot 0$ (3)
C10	$0 \cdot 1686$ (4)	$0 \cdot 1197$ (6)	$0 \cdot 8487$ (15)	6.3 (4)
C11	0.0903 (4)	0.0884 (6)	0.7800 (15)	66 (4)
C12	0.0598 (4)	$0-1351$ (6)	0.6146 (15)	6.6 (4)
C13	$0 \cdot 1042$ (5)	$0 \cdot 2114$ (6)	0.5205 (14)	$5 \cdot 9$ (4)
C14	01822 (5)	$0 \cdot 2405$ (6)	0.5905 (16)	$7 \cdot 2$ (5)
C15	$0 \cdot 2134$ (4)	$0 \cdot 1951$ (6)	0.7521 (16)	$7 \cdot 1$ (5)
C16	0.0733 (5)	$0 \cdot 2632$ (6)	0.3404 (15)	$6 \cdot 9$ (5)
017	$0 \cdot 1113$ (4)	$0 \cdot 3275$ (5)	0.2463 (11)	$9 \cdot 2$ (4)
018	-0.0041 (3)	$0 \cdot 2292$ (4)	0.2914 (10)	7.6 (3)
C19	-0.0374 (5)	02693 (6)	$0 \cdot 1083$ (15)	7.7 (5)
C20	-0.0940 (5)	0.3450 (6)	$0 \cdot 2056$ (14)	6.7 (5)
C21	-0.1389 (5)	0.3842 (7)	$0 \cdot 0122$ (17)	$8 \cdot 8$ (6)
C 22	-0.2059 (6)	$0 \cdot 4464$ (8)	0.0699 (20)	$10 \cdot 3$ (7)
C23	-0.2329 (5)	$0 \cdot 4917$ (8)	-0.1366 (21)	$10 \cdot 2$ (7)
O30	0.4161 (3)	-0.0871 (4)	1.7005 (11)	8.1 (3)
C31	0.3995 (5)	-0.1669 (6)	1.8375 (16)	$7 \cdot 1$ (5)
C32	$0 \cdot 4748$ (5)	-0.1800 (7)	1.9548 (17)	$8 \cdot 1$ (5)
C33	0.4644 (5)	$-0.2657(7)$	2.0959 (16)	$8 \cdot 1$ (5)
C34	0.5379 (5)	-0.2818 (7)	$2 \cdot 2212$ (17)	$8 \cdot 2$ (5)
C35	0.5286 (6)	-0.3673 (8)	$2 \cdot 3557$ (19)	10.4 (7)
C36	0.5990 (7)	-0.3803 (9)	$2 \cdot 4863$ (21)	$12 \cdot 2$ (8)
F201	-0.0571 (3)	0.4222 (4)	0.3391 (9)	$9 \cdot 3$ (3)
F202	-0.1520 (3)	$0 \cdot 3035$ (4)	$0 \cdot 3423$ (10)	100 (3)
F211	-0.0821 (3)	$0 \cdot 4327$ (6)	$-0 \cdot 1087$ (12)	13.7 (4)
F212	-0.1728 (4)	0.2997 (4)	-0.1304 (11)	12.9 (4)
F221	-0.1756 (5)	0.5217 (5)	0.2337 (13)	16.0 (5)
F222	-0.2674 (4)	0.3928 (6)	$0 \cdot 1613$ (12)	13.8 (5)
F231	-0.2755 (4)	0.4185 (5)	-0.2734 (12)	13.5 (4)
F232	-0.2881 (4)	$0 \cdot 5527$ (5)	-0.0461 (12)	14.5 (5)

with those found in the precisely determined 4-cyanophenyl 4-perfluoroheptylbenzoate structure [7].

The molecular conformation of compound 1B $(n=6)$ can be described by considering successively the three parts previously defined. The dibenzoate central core is quasi-planar with the $\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 9-\mathrm{C} 10$ torsion angle equal to $178.3(7)^{\circ}$ which is quite unusual; in structures with a dibenzoate core [14-16], this torsion angle is generally greater than 40°. The total length of the core is equal to $1120(1) \AA\left(\mathrm{C}_{1} \ldots \mathrm{O}_{18}\right)$. The alkyloxy chain is fully extended with torsion angles differing by less than 5° from the trans-conformation $\left(180^{\circ}\right)$ and has a length of $7.41(1) \AA\left(\mathrm{O}_{30} \ldots \mathrm{C}_{36}\right)$; the semi-perfluorinated chain also has an extended conformation with torsion angles differing by less than 10° from the trans-conformation $\left(180^{\circ}\right)[13,17]$ and has a length of $6.09(1) \AA\left(\mathrm{C}_{19} \ldots\right.$

Figure 2. SNOOPI drawing and atom labelling of one of the molecules studied. Displacement ellipsoids are shown at 50% probability level.

Figure 3. Projection of structure 1B $(n=6)$ onto the $(x 0 y)$ plane.
F_{232}). The molecular conformation can be described with only the $\mathrm{C}_{16}-\mathrm{O}_{18}-\mathrm{C}_{19}-\mathrm{C}_{20}$ torsion angle equal to $-104 \cdot 9(7)^{\circ}$. (The other torsion angles are close to 180°.) Finally the moiety including the central core (C_{1} to C_{18}) and the alkoxy chain (O_{30} to C_{38}) is nearly planar and together with the semi-perfluorinated chain (C_{19} to C_{23}) makes an angle close to 75°. The molecule is bent at the C19 atom level with a $\mathrm{C}_{36} \ldots \mathrm{C}_{19} \ldots \mathrm{C}_{23}$ angle close to $156 \cdot 1(2)^{\circ}$. The total length of the molecule is $26 \cdot 58(2) \AA$ ($\mathrm{C}_{36} \ldots \mathrm{~F}_{232}$).

4.3. Molecular arrangement

The projection of the structure onto the ($x 0 y$) plane is displayed in figure 3. It shows the existence of sheets parallel to the $(y 0 z)$ plane with a thickness close to the b parameter, i.e. $13.35 \AA$, while the thickness of the sheets
in the S_{A} mesophase is close to $28.67 \AA$. The tilt angle \dagger in these sheets is very high and close to 63°. Molecules are antiparallel through the centres of symmetry. The molecular arrangement in the crystal is S_{C}-like. The crystal cohesion results from dipolar interactions between antiparallel carbonyl groups and from van der Waals interactions between neighbouring molecules. The interactions between sheets are of van der Waals type and presumably very weak.

The molecular arrangement of compound 1B $(n=6)$ can be represented by scheme 1 in figure 4.

This arrangement can be compared to that observed in the crystal structure of compound 1A ($n=11$). The
\dagger The tilt angle is the angle between the direction of the core (atoms C_{1} to C_{18}) and the normal to the sheet.

Table $5(a)$. Bond lengths (A) and their standard deviations for compound 1B $(n=6)$.

C1-C2	1.38 (1)	O18-C19	$1 \cdot 42$ (1)
C1-C6	$1 \cdot 38$ (1)	C19-C20	1.48 (1)
C1-030	1.37 (1)	C20-C21	1.57 (1)
C2-C3	$1 \cdot 36$ (1)	C20-F201	$1 \cdot 31$ (1)
C3 C4	$1 \cdot 38$ (1)	C20-F202	$1 \cdot 35$ (1)
C4-C5	$1 \cdot 39$ (1)	C21-C22	$1 \cdot 45$ (2)
C4-C7	$1 \cdot 47$ (1)	C21-F211	$1 \cdot 33$ (1)
C5-C6	$1 \cdot 36$ (1)	C21-F212	$1 \cdot 39$ (1)
C7 C8	$1 \cdot 19$ (1)	C22-C23	$1 \cdot 54$ (2)
C7-09	$1 \cdot 35$ (1)	C22-F221	$1 \cdot 36$ (1)
O9-C10	$1 \cdot 39$ (1)	C22-F222	$1 \cdot 32$ (1)
C10-C11	$1 \cdot 39$ (1)	C23-F231	$1 \cdot 33$ (1)
C10-C15	$1 \cdot 37$ (1)	C23-F232	$1 \cdot 33$ (1)
C11 C12	$1 \cdot 37$ (1)	O30-C31	1.42 (1)
C12-C13	$1 \cdot 37$ (1)	C31-C32	$1 \cdot 50$ (1)
C13-C14	$1 \cdot 38$ (1)	C32-C33	1.50 (1)
C13-C16	$1 \cdot 48$ (1)	C33-C34	$1 \cdot 50$ (1)
C14-C15	$1 \cdot 35$ (1)	C34 C35	1.47 (2)
C16-017	$1 \cdot 20$ (1)	C35-C36	1.47 (2)
C16-O18	$1 \cdot 35$ (1)		

Table $5(b)$ Bond angles (${ }^{\circ}$) and their standard deviations for compound 1B $(n=6)$.

C2-C1 C_{6}	119-1 (8)	O18-C19-C20	109.6 (7)
C2-C1-O30	124.1 (8)	C19-C20-C21	111.9 (8)
C6-C1-O30	116.8 (8)	C19-C20-F201	111.7 (8)
C1-C2-C3	119.7 (8)	C19-C20-F202	110.7 (7)
C2-C3-C4	121.8 (8)	C21-C20-F201	$110 \cdot 1$ (7)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	117.9 (8)	C21-C20-F202	$106 \cdot 3$ (7)
C3-C4-C7	119.4 (7)	F201-C20-F202	105.9 (7)
C5-C4-C7	122.7 (8)	C20-C21-C22	$120 \cdot 9$ (9)
C4 C5 C6	120.5 (8)	C20-C21-F211	106.0 (8)
C1-C6-C5	121.0 (9)	C20-C21-F212	107.5 (8)
C4-C7-O8	$125 \cdot 5$ (8)	C22-C21-F211	$109 \cdot 6$ (9)
$\mathrm{C4}-\mathrm{C} 7-\mathrm{O} 9$	$110 \cdot 8$ (7)	C22-C21-F212	$103 \cdot 5$ (9)
O8-C7-09	123.7 (8)	F211-C21-F212	$108 \cdot 8$ (8)
C7-09 C10	125.8 (7)	C21-C22-C23	113 (1)
O9- $\mathrm{C10}-\mathrm{C} 11$	126.9 (8)	C21-C22-F221	103.3 (9)
O9-C10-C15	113.0 (7)	C21-C22-F222	110 (1)
C11-C10-C15	$120 \cdot 1$ (8)	C23-C22-F221	110.2 (9)
C10-C11-C12	118.3 (8)	C23-C22-F222	110.6 (9)
C11-C12-C13	121.6 (8)	F221-C22-F222	$109 \cdot 5$ (9)
C12-C13-C14	118.9 (8)	C22-C23-F231	108.3 (9)
$\mathrm{C12}^{-\mathrm{C13}} \mathrm{Cl}^{6}$	123.0 (8)	C22-C23-F232	104.2 (9)
C14-C13-C16	118.0 (8)	F231-C23-F232	$103 \cdot 3$ (9)
C13-C14-C15	$120 \cdot 3$ (8)	$\mathrm{C} 1-\mathrm{O} 30-\mathrm{C} 31$	118.4 (7)
C10-C15-C14	$120 \cdot 7$ (8)	O30-C31-C32	$109 \cdot 0$ (7)
C13-C16-O17	$125 \cdot 1$ (8)	C31-C32-C33	113.1 (8)
$\mathrm{C13-16}^{\text {C18 }}$	112.0 (7)	C32-C33-C34	115.5 (8)
$017 \mathrm{Cl}^{-O 18}$	122.9 (8)	C33-C34-C35	115.8 (9)
C16-O18-C19	116.2 (7)	C34-C35-C36	116 (1)

latter crystallizes in the $P 1(Z=2)$, space group, i.e. with two independent molecules (mol I and mol II) in the asymmetric unit as shown in figure 5 . These molecules have very similar conformations and are quasi-parallel. The molecular arrangement in the structure of 1A ($n=11$) can be seen in figure 6, which shows the projec-

Figure 4. Scheme 1: schematic molecular arrangement in the crystal of compound 1B $(n=6) . \mathbf{C}, \mathbf{F}$ and \mathbf{H} show the core, the semi-perfluorinated chain and the alkyloxy chain, respectively. Scheme 2: schematic molecular arrangement in the crystal of compound 1A $(n=11)$. Scheme 3: hypothetical centrosymmetrical molecular arrangement of compound $1 \mathbf{A}(n=11)$ if the molecules are related by centres of symmetry.

Figure 5. SNOOPI drawing of the two independent molecules I and II in the asymmetric unit of $\mathbf{1 A}(n=11)$. Displacement ellipsoids are shown at 50% probability levels.
tion of the structure onto the ($x 0 z$) plane, with sheets parallel to the ($y 0 z$) plane, and whose thickness is close to the a parameter $(30.91 \AA)$. Because there are no

Figure 6. Projection of the structure of compound $1 \mathbf{A}(n=11)$ onto the $(x 0 z)$ plane.
centres of symmetry, all molecules in a sheet are parallel. The molecular arrangement in $\mathbf{1 A}(n=11)$ can be represented by scheme 2 in figure 4.

Such a molecular arrangement is characterized by a permanent dipole moment and should give rise to ferroelectric properties which will be studied later. If we suppose that the molecules are related through centres of symmetry, the hypothetical molecular arrangement can be represented by scheme 3 in figure 4 . Such a hypothetical molecular arrangement cannot give rise to sheets, because of the very different lengths of the alkoxy chain on one side and the semi-perfluorinated heptafluorobutyloxy chain on the other side. Therefore, we can predict that in such perfluorinated compounds, the molecular arrangement can be related to the relative lengths of chains on both sides of the polyaromatic central core. This can give useful suggestions for the synthesis of similar compounds with chains of very different lengths, e.g. compounds with the same alkyloxy chain and with very different semi-perfluorinated chain lengths.

5. Conclusion

We have synthesized three different dibenzoate series with semi-perfluorinated chains. The compounds exhibit S_{A} and/or S_{C} phases, and favour the formation of the S_{C} phase when compared with the hydrogenated derivatives which only display the S_{A} phase. The layer spacing of the S_{A} phase is slightly lower than the molecular length. This result is concordant with the crystal structure which shows the dibenzoate core tilted to the layer. One of the interesting results is the ferroelectric symmetry of the crystal structure observed for the compounds 1 A ($n=$ 11), and a model for obtaining this structure is proposed.

6. Experimental

The chemical structures of all compounds were checked by nuclear magnetic resonance (Bruker ARX
300) and by Fourier Transform Infrared Spectroscopy (Nicolet MX-1). The purity of intermediates and final products was checked by thin layer chromatography and by normal-phase HPLC.

6.1. 4-Benzyloxybenzoic acid

20 g of potassium hydroxide were dissolved in 30 ml of water and 400 ml of ethanol. 52.5 g of ethyl 4-hydroxybenzoate were added and then 51.3 g of benzyl bromide (0.3 mol). The mixture was boiled for 4 h with stirring. A solution of potassium hydroxyde (20 g in 30 ml of water) was added slowly and then boiled for 2 h . The mixture was cooled to room temperature and hydrolysed with 40 ml of concentrated $\mathrm{HCl}, 200 \mathrm{~g}$ of crushed ice and 400 ml of water. The solid was filtered off and washed with water. The product was recrystallized from ethanol (95%). Yield: 58 per cent.

6.2. 2, 2,3,3,4,4,4-Heptafluorobutyl 4-benzyloxybenzoate

To a solution of 4 g of $2,2,3,3,4,4,4$-heptafluoro-1butanol (0.02 mol), $4.13 \mathrm{~g}(0.022 \mathrm{~mol})$ of dicyclohexylcarbodiimide (DCC), and 0.2 g of 4-dimethylaminopyridine (DMAP) in 100 ml of dichloromethanc, under argon, was added $4.74 \mathrm{~g}(0.02 \mathrm{~mol})$ of 4-benzyloxybenzoic acid. The mixture was stirred at room temperature overnight. It was then filtered, the solvent was evaporated and the residue was chromatographed on silica gel with toluene as solvent. Yield: 82 per cent.

6.3. 2,2,3,3,4,4,4-Heptafluorobutyl 4-hydroxybenzoate

Hydrogenolysis of a solution of $6.5 \mathrm{~g}(0.016 \mathrm{~mol})$ of 2,2,3,3,4,4,4-heptafluorobutyl 4-benzyloxybenzoate in 100 ml of ethyl acetate, 10 ml of 95% ethanol and 300 mg of palladium on active carbon afforded quantitatively the corresponding phenol. Yield: 87 per cent, m.p. $77^{\circ} \mathrm{C}$. IR (KBr): 3620, 1694, 1609, 1590, 1350, 1235, 1160,
$1019 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right): 4 \cdot 8(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OH}$, $\left.\mathrm{CF}_{2} \mathrm{CH}_{2}\right), 6.9(\mathrm{~d}, 2 \mathrm{H}$, aromatic), $8.0(\mathrm{~d}, 2 \mathrm{H}$, aromatic)

6.4. 2,2,3,3,4,4,4-Heptafluorobutyloxycarbonylphenyl 4-hexyloxybenzoate

To a mixture of $0.32 \mathrm{~g} \quad(1.0 \mathrm{mmol})$ of 2,2,3,3,4,4,4-heptafluorobutyl 4-hydroxybenzoate, 0.22 g $(1.0 \mathrm{mmol})$ of DCC, and 10 mg of DMAP in 10 ml of dichloromethane, was added $0.54 \mathrm{~g}(1.0 \mathrm{mmol})$ of 4-hexyloxybenzoic acid. The solution was stirred at room temperature overnight. The precipitate was filtered off, the solvent evaporated, and chromatography on silica gel with toluene as solvent afforded the desired product. Yield: 76 per cent. IR (KBr): 2962, 1732, 1630, $1274 \cdot 1145 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right): 1 \cdot 1(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) .1 .9\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 2.2\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \beta\right), 4 \cdot 1(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \alpha\right), 4.9\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 6 \cdot 9(\mathrm{~d}, 2 \mathrm{H}$, aromatic), $7 \cdot 4$ (d, 2 H , aromatic), 8.1 ($\mathrm{m}, 4 \mathrm{H}$, aromatic)

The authors wish to acknowledge Professor G. Sigaud and Drs P. Barois, J. Malthête, F. G. Tournilhac and H. Allouchi for fruitful discussions and their interest in this work.

References

[1] Ivashenko, A. V., Koshev, E. I., Lazareva, V. T., Prudnikova, E. K., Titov, V. V., Zverkova, T. I., Barnik, H. I., and Yagupolski, L. M., 1981, Mol. Cryst. liq. Cryst., 67, 235.
[2] Janulis, E. P., Norack, J. C., Papapolymerou, G. A.,

Tristani-Kendra, M., and Huffman, W. A., 1988, Ferroelectrics, 85, 375.
[3] Nguyen, H. T., Sigaud, G., Achard, M. F., Hardouin, F., Twieg, R. J., and Betterton, K., 1991, Liq. Cryst., 10, 389.
[4] Doi, T., Sakurai, Y., Tamatani, A., Takenaka, S., Kusabayashi, S., Nishihata, Y., and Teraushi, H., 1991, J. Mat. Chem., 1, 169.
[5] Twieg, R. J., Betterton, K., Di Pietro, R., Gravert, D., Nguyen, C., Nguyen, H. T., Babeal, A., and Destrade, C., 1991, SPIE, 1455, 86.
[6] Kromm, P., Allouchi, H., Bideau, J. P., and Cotrait, M., 1994, Mol Cryst. liq. Cryst., 257, 9.
[7] Kromm, P., Bideau, J. P., Cotrait, M., Destrade, C., and Nguyen, H. T., 1994, Acta Crystallogr., C50, 112.
[8] Gilmore, C. J., 1984, J. appl. Cryst., 17, 42.
[9] Lehman, H. S., Koetzle, T. F., and Hamilton, W. C., 1972, J. Am. chem. Soc., 94, 2657.
[10] Davies, K., 1983, SNOOPI, Program for Drawing Crystals and Molecular Diagrams, Chemical Laboratory, University of Oxford, England.
[11] Kromm, P., Allouchi, H., Bideau, J. P., Cotrait, M., and Nguyen, H. T., 1995, Acta Crystallogr., C51, 1229.
[12] Bideau, J. P., Bravic, G., Cotrait, M., Destrade, C., and Nguyen, H. T., 1991, Liq. Cryst., 10, 3, 379.
[13] Allouchi, H., Bideau, J. P., and Cotrait, M., 1992, Acta Crystallogr., C48, 1037.
[14] Hori, K., and Ohashi, Y., 1991, Mol Cryst. liq. Cryst., 203, 171.
[15] Shibakami, M., Tamura, M., Arimura, T., Kurosawa, S., and Sekiga, A., 1994, Acta Crystallogr., C50, 592.
[16] Zareba, I., Allouchi, H., Cotrait, M., Destrade, C., Nguyen, H. T. 1996, Acta Crystallogr., C52, 441.
[17] MacGillary, C. M., Wolthuis-Spry, M., 1970, Acta Crystallogr., B26, 645.

[^0]: *Author for correspondence.

